48 research outputs found

    Adaptive Impedance-Conditioned Phase-Locked Loop for the VSC Converter Connected to Weak Grid

    Get PDF
    From MDPI via Jisc Publications RouterHistory: accepted 2021-09-17, pub-electronic 2021-09-23Publication status: PublishedIn this paper, an adaptive version of the impedance-conditioned phase-locked loop (IC-PLL), namely the adaptive IC-PLL (AIC-PLL), is proposed. The IC-PLL has recently been proposed to address the issue of synchronisation with a weak AC grid by supplementing the conventional synchronous reference frame phase-locked loop (SRF-PLL) with an additional virtual impedance term. The resulting IC-PLL aims to synchronise the converter to a remote and stronger point in the grid, hence increasing the upper bound on the achievable power transfer achieved by the VSC converter connected to the weak grid. However, the issue of the variable grid strength imposes another challenge in the operation of the IC-PLL. This is because the IC-PLL requires impedance estimation methods to estimate the value of the virtual impedance part. In AIC-PLL, the virtual impedance part is estimated by appending another dynamic loop in the exciting IC-PLL. In this method, an additional closed loop is involved so that the values of the virtual inductance and resistance are internally estimated and adapted. Hence, the VSC converter becomes effectively viable for the case of the grid strength variable, where the estimation of the grid impedance becomes unnecessary. The results show that the converter that relies on AIC-PLL has the ability to transfer power that is approximately equal to the theoretical maximum power while maintaining satisfactory dynamic performance

    Model predictive control of smart districts with fifth generation heating and cooling networks

    Get PDF
    Fifth Generation District Heating and Cooling (5GDHC) networks, in which low temperature water is distributed to water-source heat pumps (WSHPs) in order to meet thermal demands, are expected to have a significant impact on the decarbonisation of energy supply. Thermal storage installed in these networks offers operational flexibility that can be leveraged to integrate renewable electrical and thermal energy sources. Thus, when considered as part of a smart multi-energy district, 5GDHC substation devices (e.g., WSHPs, storage) may be optimally operated using Model Predictive Control (MPC) in order to match demand with low-cost supply of electricity. However, the application of MPC requires the ability to model 5GDHC networks within the context of a multi-energy system. Hence, this paper extends an existing, generalised control-oriented modelling framework for multi-energy systems to accommodate 5GDHC networks. Additions include the ability to represent hydraulic pumps, thermodynamic cycle devices (such as WSHPs) and multi-energy networks within the framework. Furthermore, an economic MPC (eMPC) scheme is proposed for energy management of 5GDHC-based smart districts. Finally, a case study is presented in which the proposed eMPC controller is compared with rule-based control for economic operation of a smart district

    MIRRAX: A Reconfigurable Robot for Limited Access Environments

    Get PDF
    The development of mobile robot platforms for inspection has gained traction in recent years with the rapid advancement in hardware and software. However, conventional mobile robots are unable to address the challenge of operating in extreme environments where the robot is required to traverse narrow gaps in highly cluttered areas with restricted access. This paper presents MIRRAX, a robot that has been designed to meet these challenges with the capability of re-configuring itself to both access restricted environments through narrow ports and navigate through tightly spaced obstacles. Controllers for the robot are detailed, along with an analysis on the controllability of the robot given the use of Mecanum wheels in a variable configuration. Characterisation on the robot's performance identified suitable configurations for operating in narrow environments. The minimum lateral footprint width achievable for stable configuration (<2o<2^\text{o}~roll) was 0.19~m. Experimental validation of the robot's controllability shows good agreement with the theoretical analysis. A further series of experiments shows the feasibility of the robot in addressing the challenges above: the capability to reconfigure itself for restricted entry through ports as small as 150mm diameter, and navigating through cluttered environments. The paper also presents results from a deployment in a Magnox facility at the Sellafield nuclear site in the UK -- the first robot to ever do so, for remote inspection and mapping.Comment: 10 pages, Under review for IEEE Transactions on Robotic

    CARMA II: A ground vehicle for autonomous surveying of alpha, beta and gamma radiation

    Get PDF
    Surveying active nuclear facilities for spread of alpha and beta contamination is currently performed by human operators. However, a skills gap of qualified workers is emerging and is set to worsen in the near future due to under recruitment, retirement and increased demand. This paper presents an autonomous ground vehicle that can survey nuclear facilities for alpha, beta and gamma radiation and generate radiation heatmaps. New methods for preventing the robot from spreading radioactive contamination using a state-machine and radiation costmaps are introduced. This is the first robot that can detect alpha and beta contamination and autonomously re-plan around the contamination without the wheels passing over the contaminated area. Radiation avoidance functionality is proven experimentally to reduce alpha and beta contamination spread as well as gamma radiation dose to the robot. The robot’s survey area is defined using a custom designed, graphically controlled area coverage planner. It was concluded that the robot is highly suited to certain monotonous room scale radiation surveying tasks and therefore provides the opportunity for financial savings, to mitigate a future skills gap, and provision of radiation surveys that are more granular, accurate and repeatable than those currently performed by human operators

    Lessons learned: Symbiotic autonomous robot ecosystem for nuclear environments

    Get PDF
    Nuclear facilities have a regulatory requirement to measure radiation levels within Post Operational Cleanout (POCO) around nuclear facilities each year, resulting in a trend towards robotic deployments to gain an improved understanding during nuclear decommissioning phases. The UK Nuclear Decommissioning Authority supports the view that human-in-the-loop robotic deployments are a solution to improve procedures and reduce risks within radiation haracterisation of nuclear sites. We present a novel implementation of a Cyber-Physical System (CPS) deployed in an analogue nuclear environment, comprised of a multi-robot team coordinated by a human-in-the-loop operator through a digital twin interface. The development of the CPS created efficient partnerships across systems including robots, digital systems and human. This was presented as a multi-staged mission within an inspection scenario for the heterogeneous Symbiotic Multi-Robot Fleet (SMuRF). Symbiotic interactions were achieved across the SMuRF where robots utilised automated collaborative governance to work together where a single robot would face challenges in full characterisation of radiation. Key contributions include the demonstration of symbiotic autonomy and query-based learning of an autonomous mission supporting scalable autonomy and autonomy as a service. The coordination of the CPS was a success and displayed further challenges and improvements related to future multi-robot fleets
    corecore